5.2 Classical thermodynamics

Thermodynamic laws

Thermodynamic temperature ^a	$T \propto \lim_{p \to 0} (pV)$	(5.1)	T thermodynamic temperature V volume of a fixed mass of gas p gas pressure
Kelvin temperature scale	$T/K = 273.16 \frac{\lim_{p \to 0} (pV)_T}{\lim_{p \to 0} (pV)_{tr}}$	(5.2)	K kelvin unit tr temperature of the triple point of water
First law ^b	$\mathrm{d}U = \mathrm{d}Q + \mathrm{d}W$	(5.3)	dU change in internal energy dW work done on system dQ heat supplied to system
Entropy ^c	$\mathrm{d}S = \frac{\mathrm{d}Q_{\mathrm{rev}}}{T} \ge \frac{\mathrm{d}Q}{T}$	(5.4)	S experimental entropy T temperature rev reversible change

^aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of thermodynamics: If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

Thermodynamic work^a

Hydrostatic pressure	dW = -p dV	(5.5)	p (hydrostatic) pressure dV volume change
Surface tension	$dW = \gamma dA$	(5.6)	dW work done on the system γ surface tension dA change in area
Electric field	$\bar{\mathbf{d}}W = \mathbf{E} \cdot \mathbf{d}\mathbf{p}$	(5.7)	E electric fielddp induced electric dipole moment
Magnetic field	$dW = \mathbf{B} \cdot d\mathbf{m}$	(5.8)	B magnetic flux densitydm induced magnetic dipole moment
Electric current	$dW = \Delta \phi dq$	(5.9)	$\Delta \phi$ potential difference d q charge moved

^aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on which they are working.

^bThe d notation represents a differential change in a quantity that is not a function of state of the system.

^cAssociated with the second law of thermodynamics: No process is possible with the sole effect of completely converting heat into work (Kelvin statement).

Cycle efficiencies (thermodynamic)^a

Heat engine	$\eta = \frac{\text{work extracted}}{\text{heat input}} \le \frac{T_{\text{h}} - T_{\text{l}}}{T_{\text{h}}}$	(5.10)	η efficiency $T_{\rm h}$ higher temperature $T_{\rm l}$ lower temperature
Refrigerator	$ \eta = \frac{\text{heat extracted}}{\text{work done}} \le \frac{T_1}{T_h - T_1} $	(5.11)	
Heat pump	$ \eta = \frac{\text{heat supplied}}{\text{work done}} \le \frac{T_{\text{h}}}{T_{\text{h}} - T_{\text{l}}} $	(5.12)	
Otto cycle ^b	$ \eta = \frac{\text{work extracted}}{\text{heat input}} = 1 - \left(\frac{V_2}{V_1}\right)^{\gamma - 1} $	(5.13)	$\frac{V_1}{V_2}$ compression ratio γ ratio of heat capacities (assumed constant)

^aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures T_h and T_l . ^bIdealised reversible "petrol" (heat) engine.

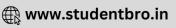
Heat capacities

Constant volume	$C_V = \frac{dQ}{dT}\Big _V = \frac{\partial U}{\partial T}\Big _V = T \frac{\partial S}{\partial T}\Big _V$	(5.14)	$egin{array}{cccc} C_V & ext{heat capacity, V constant} \\ Q & ext{heat} \\ T & ext{temperature} \\ V & ext{volume} \\ U & ext{internal energy} \\ \end{array}$
Constant pressure	$C_p = \frac{\partial Q}{\partial T}\Big _p = \frac{\partial H}{\partial T}\Big _p = T\frac{\partial S}{\partial T}\Big _p$		H enthalpy
Difference in heat capacities	$C_{p} - C_{V} = \left(\frac{\partial U}{\partial V}\Big _{T} + p\right) \frac{\partial V}{\partial T}\Big _{p}$ $= \frac{VT\beta_{p}^{2}}{\kappa_{T}}$	(5.16) (5.17)	β_p isobaric expansivity κ_T isothermal compressibility
Ratio of heat capacities	$\gamma = \frac{C_p}{C_V} = \frac{\kappa_T}{\kappa_S}$	(5.18)	γ ratio of heat capacities κ_S adiabatic compressibility

Thermodynamic coefficients

Isobaric expansivity ^a	$\beta_p = \frac{1}{V} \frac{\partial V}{\partial T} \Big _p$	(5.19)	β_p isobaric expansivity V volume T temperature
Isothermal compressibility	$\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T$	(5.20)	κ_T isothermal compressibility p pressure
Adiabatic compressibility	$\kappa_S = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _S$	(5.21)	κ_S adiabatic compressibility
Isothermal bulk modulus	$K_T = \frac{1}{\kappa_T} = -V \frac{\partial p}{\partial V} \Big _T$	(5.22)	K_T isothermal bulk modulus
Adiabatic bulk modulus	$K_S = \frac{1}{\kappa_S} = -V \frac{\partial p}{\partial V} \Big _S$	(5.23)	K_S adiabatic bulk modulus

^aAlso called "cubic expansivity" or "volume expansivity." The linear expansivity is $\alpha_p = \beta_p/3$.



Expansion processes

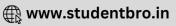
	$\partial T + T^2 \partial (n/T) +$		η Joule coefficient
Joule	$ \eta = \frac{\partial T}{\partial V}\Big _{U} = -\frac{T^2}{C_V} \frac{\partial (p/T)}{\partial T}\Big _{V} $	(5.24)	T temperature
expansion ^a	•		p pressure
Capansion	$=-\frac{1}{C_V}\left(T\frac{\partial p}{\partial T}\Big _V-p\right)$	(5.25)	U internal energy
	$C_V \setminus \partial T V^{-1}$	` ,	C_V heat capacity, V constant
	$\partial T \mid T^2 \partial (V/T) \mid$	(5.26)	μ Joule–Kelvin coefficient
Joule-Kelvin	$\mu = \frac{\partial T}{\partial p}\Big _{H} = \frac{T^{2}}{C_{p}} \frac{\partial (V/T)}{\partial T}\Big _{p}$	(5.26)	V volume
expansion ^b		(5.05)	H enthalpy
	$= \frac{1}{C_p} \left(T \frac{\partial V}{\partial T} \Big _p - V \right)$	(5.27)	C_p heat capacity, p constant

^aExpansion with no change in internal energy.

Thermodynamic potentials a

Internal energy	$dU = T dS - p dV + \mu dN$	(5.28)	U Τ S μ N	internal energy temperature entropy chemical potential number of particles
Enthalpy	$H = U + pV$ $dH = T dS + V dp + \mu dN$	(5.29) (5.30)	H p V	enthalpy pressure volume
Helmholtz free energy ^b	$F = U - TS$ $dF = -S dT - p dV + \mu dN$	(5.31) (5.32)	F	Helmholtz free energy
Gibbs free energy ^c	$G = U - TS + pV$ $= F + pV = H - TS$ $dG = -S dT + V dp + \mu dN$	(5.33) (5.34) (5.35)	G	Gibbs free energy
Grand potential	$\Phi = F - \mu N$ $d\Phi = -S dT - p dV - N d\mu$	(5.36) (5.37)	Φ	grand potential
Gibbs-Duhem relation	$-S\mathrm{d}T + V\mathrm{d}p - N\mathrm{d}\mu = 0$	(5.38)		
Availability	$A = U - T_0 S + p_0 V$ $dA = (T - T_0) dS - (p - p_0) dV$	(5.39) (5.40)	A T_0 p_0	availability temperature of surroundings pressure of surroundings

a dN=0 for a closed system.



^bExpansion with no change in enthalpy. Also known as a "Joule-Thomson expansion" or "throttling" process.

bSometimes called the "work function." cSometimes called the "thermodynamic potential."

Maxwell's relations

	$\partial T \mid \partial p \mid (\partial^2 U)$		U	internal energy
Maxwell 1	$\frac{\partial T}{\partial V}\Big _{S} = -\frac{\partial p}{\partial S}\Big _{V} \left(= \frac{\partial^{2} U}{\partial S \partial V} \right)$	(5.41)	T	temperature
	01 15 05 11 (0501)		V	volume
	$\partial T \mid \ \ \ \ \partial V \mid \ \ \ \left(\ \ \ \ \partial^2 H \ \right)$		Н	enthalpy
Maxwell 2	$\left. \frac{\partial f}{\partial p} \right _{S} = \frac{\partial f}{\partial S} \right _{p} \left(= \frac{\partial f}{\partial p \partial S} \right)$	(5.42)	S	entropy
	$Cp \mid S = CS \mid p = CpCS $		p	pressure
Maxwell 3	$\frac{\partial p}{\partial T}\Big _{V} = \frac{\partial S}{\partial V}\Big _{T} \left(= \frac{\partial^{2} F}{\partial T \partial V} \right)$	(5.43)	F	Helmholtz free energy
Maxwell 4	$\left. \frac{\partial V}{\partial T} \right _p = -\frac{\partial S}{\partial p} \right _T \left(= \frac{\partial^2 G}{\partial p \partial T} \right)$	(5.44)	G	Gibbs free energy

Gibbs-Helmholtz equations

$\partial(F/T)$.		F	Helmholtz free energy
$U = -T^2 \frac{\partial (F/T)}{\partial T} \Big _{V}$	(5.45)		internal energy
_ · · · · · · · · · · · · · · · · · · ·		G	Gibbs free energy
$G = -V^2 \frac{\partial (F/V)}{\partial V} \Big _T$	(5.46)	H	enthalpy
2/0/5		T	temperature
$H = -T^2 \frac{\partial (G/T)}{\partial T}\Big _{p}$	(5.47)	p	pressure
OT - p		V	volume

Phase transitions

Heat absorbed	$L = T(S_2 - S_1)$	(5.48)	L T S	(latent) heat absorbed $(1 \rightarrow 2)$ temperature of phase change entropy
Clausius-Clapeyron equation ^a	$\frac{dp}{dT} = \frac{S_2 - S_1}{V_2 - V_1} = \frac{L}{T(V_2 - V_1)}$	(5.49)	p V 1,2	pressure volume phase states
Coexistence curve ^b	$T(V_2 - V_1)$ $p(T) \propto \exp\left(\frac{-L}{RT}\right)$	(5.51)	R	molar gas constant
Ehrenfest's equation ^c	$\frac{dp}{dT} = \frac{\beta_{p2} - \beta_{p1}}{\kappa_{T2} - \kappa_{T1}} = \frac{1}{VT} \frac{C_{p2} - C_{p1}}{\beta_{p2} - \beta_{p1}}$	(5.52) (5.53)	eta_p κ_T C_p	isobaric expansivity isothermal compressibility heat capacity (p constant)
Gibbs's phase rule	P+F=C+2	(5.54)	P F C	number of phases in equilibrium number of degrees of freedom number of components

^aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the "Clapeyron equation." ^b For $V_2 \gg V_1$, e.g., if phase 1 is a liquid and phase 2 a vapour. ^c For a second-order phase transition.

