
5.2 Classical thermodynamics

Thermodynamic laws

Thermodynamic
temperaturea T ∝ lim

p→0
(pV ) (5.1)

T thermodynamic temperature

V volume of a fixed mass of gas

p gas pressure

Kelvin
temperature scale

T/K=273.16

lim
p→0

(pV )T

lim
p→0

(pV )tr
(5.2)

K kelvin unit

tr temperature of the triple point
of water

First lawb dU= dQ+ dW (5.3)
dU change in internal energy

dW work done on system

dQ heat supplied to system

Entropyc dS =
dQrev

T
≥ dQ

T
(5.4)

S experimental entropy

T temperature

rev reversible change
aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of ther-
modynamics: If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each
other.
bThe d notation represents a differential change in a quantity that is not a function of state of the system.
cAssociated with the second law of thermodynamics: No process is possible with the sole effect of completely converting
heat into work (Kelvin statement).

Thermodynamic worka

Hydrostatic
pressure

dW =−p dV (5.5)
p (hydrostatic) pressure

dV volume change

Surface tension dW = γ dA (5.6)
dW work done on the system

γ surface tension

dA change in area

Electric field dW =E · dp (5.7)
E electric field

dp induced electric dipole moment

Magnetic field dW =B · dm (5.8)
B magnetic flux density

dm induced magnetic dipole moment

Electric current dW =∆φ dq (5.9)
∆φ potential difference

dq charge moved

aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on
which they are working.
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Cycle efficiencies (thermodynamic)a

Heat engine η=
work extracted

heat input
≤ Th −Tl

Th
(5.10)

η efficiency

Th higher temperature

Tl lower temperature

Refrigerator η=
heat extracted

work done
≤ Tl

Th −Tl
(5.11)

Heat pump η=
heat supplied

work done
≤ Th

Th −Tl
(5.12)

Otto cycleb
η=

work extracted

heat input
=1−

(
V2

V1

)γ−1

(5.13)

V1
V2

compression ratio

γ ratio of heat capacities
(assumed constant)

aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures Th and Tl.
bIdealised reversible “petrol” (heat) engine.

Heat capacities

Constant
volume

CV =
dQ

dT

∣∣∣
V

=
∂U

∂T

∣∣∣
V

=T
∂S

∂T

∣∣∣
V

(5.14)

CV heat capacity, V constant

Q heat

T temperature

V volume

U internal energy

Constant
pressure

Cp =
dQ

dT

∣∣∣
p
=
∂H

∂T

∣∣∣
p
=T

∂S

∂T

∣∣∣
p

(5.15)

S entropy

Cp heat capacity, p constant

p pressure

H enthalpy

Difference in
heat capacities

Cp −CV =

(
∂U

∂V

∣∣∣
T

+p

)
∂V

∂T

∣∣∣
p

(5.16)

=
VTβ2

p

κT
(5.17)

βp isobaric expansivity

κT isothermal compressibility

Ratio of heat
capacities

γ=
Cp

CV

=
κT

κS
(5.18)

γ ratio of heat capacities

κS adiabatic compressibility

Thermodynamic coefficients

Isobaric
expansivitya βp =

1

V

∂V

∂T

∣∣∣
p

(5.19)

βp isobaric expansivity

V volume

T temperature

Isothermal
compressibility

κT =− 1

V

∂V

∂p

∣∣∣
T

(5.20)
κT isothermal compressibility

p pressure

Adiabatic
compressibility

κS =− 1

V

∂V

∂p

∣∣∣
S

(5.21) κS adiabatic compressibility

Isothermal bulk
modulus

KT =
1

κT
=−V

∂p

∂V

∣∣∣
T

(5.22) KT isothermal bulk modulus

Adiabatic bulk
modulus

KS =
1

κS
=−V

∂p

∂V

∣∣∣
S

(5.23) KS adiabatic bulk modulus

aAlso called “cubic expansivity” or “volume expansivity.” The linear expansivity is αp =βp/3.
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Expansion processes

Joule
expansiona

η=
∂T

∂V

∣∣∣
U

=−T 2

CV

∂(p/T )

∂T

∣∣∣
V

(5.24)

=− 1

CV

(
T

∂p

∂T

∣∣∣
V

−p

)
(5.25)

η Joule coefficient

T temperature

p pressure

U internal energy

CV heat capacity, V constant

Joule–Kelvin
expansionb

µ=
∂T

∂p

∣∣∣
H

=
T 2

Cp

∂(V/T )

∂T

∣∣∣
p

(5.26)

=
1

Cp

(
T
∂V

∂T

∣∣∣
p

−V

)
(5.27)

µ Joule–Kelvin coefficient

V volume

H enthalpy

Cp heat capacity, p constant

aExpansion with no change in internal energy.
bExpansion with no change in enthalpy. Also known as a “Joule–Thomson expansion” or “throttling” process.

Thermodynamic potentialsa

Internal energy dU=T dS −pdV +µdN (5.28)

U internal energy

T temperature

S entropy

µ chemical potential

N number of particles

Enthalpy
H =U+pV (5.29)

dH =T dS+V dp+µdN (5.30)

H enthalpy

p pressure

V volume

Helmholtz free
energyb

F =U−TS (5.31)

dF =−S dT −pdV +µdN (5.32)
F Helmholtz free energy

Gibbs free energyc

G=U−TS+pV (5.33)

=F+pV =H−TS (5.34)

dG=−S dT +V dp+µdN (5.35)

G Gibbs free energy

Grand potential
Φ=F−µN (5.36)

dΦ=−S dT −pdV −Ndµ (5.37)
Φ grand potential

Gibbs–Duhem
relation

−S dT +V dp−Ndµ=0 (5.38)

Availability
A=U−T0S+p0V (5.39)

dA=(T −T0)dS − (p−p0)dV (5.40)

A availability

T0 temperature of
surroundings

p0 pressure of surroundings
a dN=0 for a closed system.
bSometimes called the “work function.”
cSometimes called the “thermodynamic potential.”
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Maxwell’s relations

Maxwell 1
∂T

∂V

∣∣∣
S
=− ∂p

∂S

∣∣∣
V

(
=

∂2U

∂S∂V

)
(5.41)

U internal energy

T temperature

V volume

Maxwell 2
∂T

∂p

∣∣∣
S
=
∂V

∂S

∣∣∣
p

(
=

∂2H

∂p∂S

)
(5.42)

H enthalpy

S entropy

p pressure

Maxwell 3
∂p

∂T

∣∣∣
V

=
∂S

∂V

∣∣∣
T

(
=

∂2F

∂T∂V

)
(5.43) F Helmholtz free energy

Maxwell 4
∂V

∂T

∣∣∣
p
=−∂S

∂p

∣∣∣
T

(
=

∂2G

∂p∂T

)
(5.44) G Gibbs free energy

Gibbs–Helmholtz equations

U=−T 2 ∂(F/T )

∂T

∣∣∣
V

(5.45)

G=−V 2 ∂(F/V )

∂V

∣∣∣
T

(5.46)

H =−T 2 ∂(G/T )

∂T

∣∣∣
p

(5.47)

F Helmholtz free energy

U internal energy

G Gibbs free energy

H enthalpy

T temperature

p pressure

V volume

Phase transitions

Heat absorbed L=T (S2 −S1) (5.48)
L (latent) heat absorbed (1→2)

T temperature of phase change

S entropy

Clausius–Clapeyron
equationa

dp

dT
=

S2 −S1

V2 −V1
(5.49)

=
L

T (V2 −V1)
(5.50)

p pressure

V volume

1,2 phase states

Coexistence curveb p(T )∝ exp

(
−L

RT

)
(5.51) R molar gas constant

Ehrenfest’s
equationc

dp

dT
=

βp2 −βp1

κT2 −κT1
(5.52)

=
1

VT

Cp2 −Cp1

βp2 −βp1
(5.53)

βp isobaric expansivity

κT isothermal compressibility

Cp heat capacity (p constant)

Gibbs’s phase rule P+F=C+2 (5.54)
P number of phases in equilibrium

F number of degrees of freedom

C number of components
aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the “Clapeyron equation.”
bFor V2 �V1, e.g., if phase 1 is a liquid and phase 2 a vapour.
cFor a second-order phase transition.
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